skip to main content


Search for: All records

Creators/Authors contains: "Gauri Joshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated learning is a distributed optimization paradigm that enables a large number of resource-limited client nodes to cooperatively train a model without data sharing. Previous works analyzed the convergence of federated learning by accounting for data heterogeneity, communication/computation limitations, and partial client participation. However, most assume unbiased client participation, where clients are selected such that the aggregated model update is unbiased. In our work, we present the convergence analysis of federated learning with biased client selection and quantify how the bias affects convergence speed. We show that biasing client selection towards clients with higher local loss yields faster error convergence. From this insight, we propose Power-of-Choice, a communication- and computation-efficient client selection framework that flexibly spans the trade-off between convergence speed and solution bias. Extensive experiments demonstrate that Power-of-Choice can converge up to 3 times faster and give 10% higher test accuracy than the baseline random selection. 
    more » « less
  2. Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server. Most existing FL algorithms require models of identical architecture to be deployed across the clients and server, making it infeasible to train large models due to clients' limited system resources. In this work, we propose a novel ensemble knowledge transfer method named Fed-ET in which small models (different in architecture) are trained on clients, and used to train a larger model at the server. Unlike in conventional ensemble learning, in FL the ensemble can be trained on clients' highly heterogeneous data. Cognizant of this property, Fed-ET uses a weighted consensus distillation scheme with diversity regularization that efficiently extracts reliable consensus from the ensemble while improving generalization by exploiting the diversity within the ensemble. We show the generalization bound for the ensemble of weighted models trained on heterogeneous datasets that supports the intuition of Fed-ET. Our experiments on image and language tasks show that Fed-ET significantly outperforms other state-of-the-art FL algorithms with fewer communicated parameters, and is also robust against high data-heterogeneity. 
    more » « less